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ABSTRACT. The asymptotic behavior of several goodness-of-fit
statistics for copula families is obtained under contiguous alterna-
tives. Many comparisons between a Cramér—von Mises functional of
the empirical copula process and new moment-based goodness-of-fit
statistics are made by considering their associated asymptotic local
power curves. It is shown that the choice of the estimator for the
unknown parameter can have a significant influence on the power
of the Cramér—von Mises test, and that some of the moment-based
statistics can provide simple and efficient goodness-of-fit methods.
The paper ends with an extensive simulation study that aims to
extend the conclusions to small and moderate sample sizes.
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1. Introduction

Copula functions contain all the information about the dependence structure of a random
vector. Indeed, due to the representation theorem of Sklar (1959), every bivariate distri-
bution function H can be written as H(z,y) = C {F(z),G(y)}, where F and G are the
marginal distributions and C : [0,1]? — [0, 1] is the copula. It turns out that C, which is
unique when F and G are continuous, is a distribution function with uniform marginals on
[0,1]. This representation enables practitioners to model the marginal behaviors and the
dependence structure in separate steps. While the adjustment of univariate distributions
is well documented, the study of goodness-of-fit tests for copulas emerged only recently as
a challenging inferential problem.

Let C be the underlying copula of a bivariate population with continuous marginals
and suppose one wants to test the goodness-of-fit hypotheses Hy : C € F = {Cy;0 € M}



and Hy : C ¢ F = {Cy;0 € M}, where M is the parameter space. Test statistics that
help discriminate between Hy and H; have been proposed by Fermanian (2005), Genest et
al. (2006a), Scaillet (2006) and Chen & Fan (2005), among others. A bayesian selection
procedure has also been investigated by Huard et al. (2006). In most cases, the efficiency
of these methods, i.e. the power, is approximated by simulating repeatedly from a fixed
alternative copula D ¢ F. This is done, in particular, in the works of Genest et al. (2008)
and Berg (2007), where many simulation results and recommendations are provided.
One of the most desirable property of a statistical procedure is its ability to detect
small departures from the null hypothesis. In the context of testing the fit to a particular
copula family, such perturbations from Hg are given by the sequence of distributions

Qén($7y) = (1 - 5n) O(:Evy) + 5nD($>y)v (1)

where 8, =n=1/25, 6 > 0 and C, D are bivariate copulas such that C' € F. This mixture
distribution is a copula for all 0 < § < n'/2. It is supposed throughout the paper that
Qs, belongs to F only at the limit when n — oco. Moreover, in order to ensure that
the departure from Hj increases as § becomes larger (at least for large values of n), it
is assumed that the copula D stochastically dominates C, i.e. D(z,y) > C(z,y) for all
(z,y) € [0,1]?. The skill of a goodness-of-fit test to reject Ho under (1) can easily be
motivated from applications in finance, where it is often advisable to detect changes in
the dependence pattern over time, e.g. regime shifts for commodity markets.

In this paper, the asymptotic non-degenerate distribution of some goodness-of-fit
statistics is investigated under the sequence (Qs,),,~; of alternatives. The focus is put
on a Cramér-von Mises type statistic computed from a version of the empirical copula
process and on simple but efficient moment-based test statistics. The characterization
of their limiting behavior enables to compute asymptotic local power curves from which
comparisons between the goodness-of-fit statistics under investigation can be made.

In Section 2, the goodness-of-fit test statistics studied in this work are defined. In
Section 3, their asymptotic distribution under alternatives of the form (1) are obtained.
These results enable to compute, in Section 4, the local power curves of the statistics under
study and hence to compare the latter under chosen scenarios of local distributions. In
Section 5, a new measure of asymptotic relative efficiency generalizing that of Pitman is
described and computed for many cases. This index is particularly useful for the Cramér—
von Mises goodness-of-fit statistic whose local power curve has no explicit expression.
An extensive simulation study that aim to investigate the local behavior of the testing
procedures in small and moderate sample sizes and compare with the asymptotic results
follows in Section 6. The paper ends with a discussion about ideas of future investigations.

2. Some goodness-of-fit statistics for copula families

Let (X1,Y7),...,(X,,Y,) be arandom sample from a bivariate population with continuous
marginal distributions F', G and whose underlying copula is C'. In Subsections 2.1, 2.2
and 2.3, statistical procedures to determine if C' belongs or not to a parametric family
F = {Cy;0 € M} are described. It is assumed throughout that M is a subset of the
real line, so that 6 can be estimated by an empirical version of a moment of Cy. Since all
statistics considered in this work are invariant under strictly increasing transformations of



the variables, one can consider, for simplicity and without any loss of generality, that the
marginal distributions are uniform on the interval [0, 1].

2.1. The empirical copula goodness-of-fit process

A consistent estimation of a copula is possible via the empirical copula, which Deheuvels
(1979) described as the distribution function of the sample of normalized ranks, i.e.
(Rin,S1n)s - (RpnsSnn), where R; , = F,(X;) and S;,, = G, (Y;), with

1 « 1
Fp() = -3 1(Xi<2) and Guy) = 1(Vi<y)
i=1 i=1
being the empirical marginal distributions. Explicitly, C' is estimated by

Cn(z,y) = 1 E”: 1 <Rm < :E,gm < y) . (2)

n
1=1

The weak consistency of the empirical process C, 9 = /n(C, — Cy) to a centered gaus-
sian limit was obtained by Deheuvels (1979) under the hypothesis of independence, i.e.
in the special case when Cy(z,y) = xy. This result was extended under general dis-
tributions by Génssler & Stute (1987), Fermanian et al. (2004) and Tsukahara (2005).
A suggestion made by Fermanian (2005) and exploited by Quessy (2005) and Genest et
al. (2008) consists in basing a goodness-of-fit test on a modified version of C, p, namely
Cn =/n(Cp, — Cén)’ where 6,, consistently estimates 6. As shown by Quessy (2005), C,, is
weakly consistent under H if the following assumptions are satisfied.

Aj. For all § € M, the first order partial derivatives of Cy exist and are continuous;

As. (Cr9,0y) converges jointly to a gaussian process (Cy, ©), where 0,, = v, —0).
Moreover, for all 8 € M and as € | 0,

sup  sup |Gy (x,y) — Colx,y)| — 0,
lo=—6]1<e (wp)€l0,1]2

where Cy = dCjy/08.

Under A; and As, the empirical goodness-of-fit process C,, converges weakly to a centered
limit C = Cyp — ©Cy having covariance function Tc(u,v,u/,v") = cov{C(u,v),C(u/,v')}
whose expression is explicit but cumbersome. Thanks to this asymptotic result, it is then
justified to base a goodness-of-fit test on some continuous functional computed from C,,
in virtue of the continuous mapping theorem (see Billingsley, 1968). An omnibus statistic
which has good power properties in general is the Cramer—von Mises distance function

1 1
= X 2 X .
vn—/o /0 {Calr,y)}? dady 3)

Note that the use of other functional distances are possible, e.g. the Kolmogorov—Smirnov
type statistics, but the latter have been found by Genest et al. (2006a) and by Genest



et al. (2008) to be generally less powerful than the Cramér—von Mises statistic. Since
statistic (3) has no explicit form in general, Genest & Rémillard (2008) proposed to rely
on the parametric bootstrap version

1 1
Vn,Nz/ / {Con(z,y)}* dady,
0 0

where C, v = v/n(C,, — Cy) and Cy is the empirical copula computed via equation (2)
from an artificial sample (X7 ,,,Y7",), ..., (X}, Y3,) from Cj . These authors show that
as n, N — oo, the process Cn N converges to the same limit as C and consequently, V,, v
has the same asymptotic distribution as V,.

2.2. Moment-based goodness-of-fit statistics

Consider two real valued moments mq and my of Cy that are related to 6 by one-to-
one functions 7y, ro defined on M such that m; = r1(f) and my = ry(f). Under
the null hypothesis that the unknown copula of a population belongs to F, one has
Ty 1(ml) =7y 1(mg) If 71y, and 7hg,, are consistent for m; and mg respectively, then
élm =r] 1 (1, n) and 6y n=T s (mg.,) provide consistent estimations of . In most cases
of interest, \/n(0;, — ¢) is asymptotically normal with mean zero and variance o7 2(Cy)
under Hy. A simple, asymptotically normal goodness-of-fit statistic is then given by

n—\/_{rl 1) —r;l(mg,n)}. (4)

A goodness-of-fit test then consists in rejecting the null hypothesis whenever |S,|/o(Cp)
exceeds zq o, ie. the (1 —a/2)-th percentile of a N(0,1) distribution, where 0*(Cy) =
lim,, .~ var(S,,). Note that tests based on §,, may be inconsistent since it may happen
that 7' (m1) = ry *(mg) even if Hy is false.

The above method can be employed by considering two of the most popular measures
of association, namely Spearman’s rho and Kendall’s tau. The latter are respectively
defined, in terms of the underlying copula Cy of the population, by

11 1,1
pc, (0) = 12/0 /0 Cy(z,y)dzdy —3 and 7¢,(6) :4/0 /0 Co(x,y)dCy(z,y) — 1. (5)

Consistent estimators based on inversions of these rank statistics are én,p = paj (pn) and

Op.r = Tc_el (Tn), where

pa=1- i(éi,n—ﬁi,nf and Tn=—1+n(%21X<XJ,Y<Y)
=1 i#j

are their sample versions. Another estimator arises from the so-called pseudo maximum-
likelihood method, which is similar to the classical likelihood approach but where the
normalized ranks are used instead of the observations. The resulting estimator én pr, has
been studied by Genest et al. (1995), Shih & Louis (1995) and recently by Kim et al.



(2006). Based on these three consistent estimators, one can build three goodness-of-fit
statistics of the form (4), namely

A~ ~ ~ A~

Sp1 =1 <9n7p — én,r) , S =/n (9n7p — 9n,PL> and S3 =+/n (én,T - en,PL> - (6)

2.8. Shih’s goodness-of-fit test for the gamma frailty model

The dependence function associated to the bivariate gamma frailty model, also referred to
as Clayton’s copula, is given in Equation (13) to be found in Appendix B. Shih (1998) con-
sidered unweighed and weighted estimations of the dependence parameter 6 via Kendall’s
tau 7, and the weighted rank-based statistic

b =3 VAVZ

i<j -

1— Ay
>

1<j

where Aij =1 {(Xz — XJ)(YYZ — Y}) > 0} and

Wi =Y 1{Xp < max(X;, X;), Yi < max(¥;,Y))}.
k=1

Since én,T =27,/(1—7,) and én,W are both unbiased for 6 under the null hypothesis that
C belongs to Clayton’s family of copulas, a version of a goodness-of-fit statistic proposed
by Shih (1998) is Sp4 = \/ﬁ(énT — énw) One deduces from arguments to be found in
Shih (1998) that S,4 is asymptotically normal under the null hypothesis. Unfortunately,
the variance provided by Shih (1998) was found to be wrong by Genest et al. (2006b),
where a corrected formula is provided. From the work of these authors, one may deduce

the asymptotic representation

1 n
Sna = %;{Kemm — Lo(Xi, Vi) } + op (1), (7)
where e '
Kolz,y) = 2(0 + 2) {2 (x—9+y—9 — 1) —r—y+ 9—+2}
and

Lo(z,y) = (0 +1)(20 + 1) log (x_e +y 1) W (0 + 1)%log(zy) + 6.

Genest et al. (2006b) then used (7) to compute the asymptotic variance of S,4, whose
complicated expression is given by

13607 4+ 13520° + 517160° + 94490* + 828163 + 3001602 + 2400 + 18

71(Co) = 362(6 + 1)2(0 + 3)2
8(0 +2)* 400 + 1) & (—1)* 8(0+1)(6 +2)
TEErE Ty ok +1+1/6)° 63 2(0),
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= T%(1/6) KT (k+1/0) S I'(2/0)k!
11(9)_;:0 T(1/0) Tk 112/ 12(9)_1§(k+1/9)1“(k+1+2/9)

3. Asymptotic behavior under local sequences

In order to derive non-degenerate limiting distributions for a given goodness-of-fit statistic
under the sequence (Qs,),~; defined in Equation (1), one has to ensure that Qs, is close
to Qp = Cy in a certain sense. One such criteria is given by van der Vaart & Wellner
(1996), where it is supposed that

_ 2
i [ l{ﬁ(man(w,y)—¢qo<x,y>)—;q°<ﬂ} dady=0, ()

n—00 qo(z,y)

for g5 being the density associated to Qs and ¢s = dqs/06. Note that condition (8) entails
that the sequence (Qs, ),,~; is contiguous with respect to Qp. This is the key requirement
that enables to derive the asymptotic local representation of the goodness-of-fit statistics
VN and Sy, ..., Spa. This is the subject of the remaining of this section.

3.1. Local behavior of some estimators of the dependence parameter

Many interesting estimators for the unknown parameter of a copula family admit the
asymptotic representation

Ona =N <9n,A — 9) = % Zn:Acg <Ri,m gi,n) +op(1), 9)
i=1

where A¢, : [0,1]? — [0,1] is a twice differentiable score function such that for all § € M
and all (z,y) € [0,1)%, E¢,{A¢c,(X,Y)} = 0 and IAG, (2, 9)| < go(z,y), where gy and A209
are integrable with respect to cg(x,y) = 0?Cy(x,7y)/0xdy. These conditions ensure that
©,,A converges in law to

Op =0 + /(0 b Acy10(z,y) 1 (7)co(w, y)dzdy + /(0 e Acy01(x,y)B2(y)co(x, y)dady,

where ©/, is the limit of n=1/2 Yo A, (X5, Y;) and (31, B2 are uniform brownian bridges,
i.e. gaussian processes with covariance function cov{3;(s), 3;(t)} = min(s,t) —st, j = 1,2,
arising as the limits of \/n{F,(z)—z} and \/n{G,(y)—y} respectively. Here, Ac, 10(x,y) =
OAc,(x,y)/0x and Ag, 01(z,y) = OAc, (z,y)/0y.

Among the estimators that admit representation (9), one has the inversion of Spear-
man’s rho and the pseudo-maximum likelihood estimator explored by Genest al. (1995)
and Shih & Louis (1995). More details will be given in Example 1 and Example 2. An-
other popular estimation strategy using a statistic that is not of the form (9) is based on
énm i.e. on the inversion of Kendall’s measure of association.

bt



The next proposition, whose proof is deferred to Appendix A.1, identifies the asymp-
totic distribution of ©,, 4 and ©,, ; = \/ﬁ(é,” — ) under contiguous alternatives of the
type (1). This result is a prerequisite in order to compute the local power of moment-based
goodness-of-fit statistics described in Section 2.2. It will also enable to characterize the
asymptotic behavior of the process Cy,, and consequently that of V,, n, under (Qs,, ),,~; for
several strategies that aim to estimate 6. a

Proposition 1
Assume that condition (8) holds for the sequence (Qs,),>1- Then under (Qs,),>1

(i) ©n,a ~ O +6pa(Cy, D), where ia(Cy, D) = Ep {Ac, (X, Y)} — Ec, {Ac, (X, Y)} and
O is a normal random variable with mean 0 and variance

(Cg) = var {ACQ (X,Y) / / Acy10(z,y)co(z,y) / / Acy01(z,y)co(z, y)}

(ii) Onr ~ Or + dur(Co, D), where pr(Cyp, D) = 4{7(, (8)} ' {Ep(Cy) — Ec, (Cy)} and
O, is a normal random variable with mean 0 and variance

) 16

= W var {2Cy(X,Y) - X - Y}.

g

The next two examples are applications of part (i) of Proposition 1 when the estimator is
based on an inversion of Spearman’s rho and on the pseudo maximum-likelihood estimator.

Example 1. Let pc,(0) be the population value of Spearman’s measure of association
for a vector (X,Y) with underlying copula Cy. Then én,p = pagl(pn) is a consistent
estimator for 6, where p, is Spearman’s rank correlation coefficient. Using a Taylor ex-
pansion of order 1, one can show that this estimator can be written in the form (9) with
Acy(z,y) = {p, (0)} {122y — 3 — pc, (0)}, where pi, (6) = dpc,(0)/d0. Thus, under
the contiguous sequence (1), 0, , = \/ﬁ(émp — 0) is asymptotically normal with drift
parameter 4,(Cp, D) = {p, 0)}Hpp — pc, (9) and variance

(Cg) % var {XY+/Ol/Xlyce(:zt,y)da:d@H-/Y1 /01 xce(:n,y)da:dy}.

Ezample 2. Let én pr be the pseudo likelihood estimator. From the work of Genest et
al. (1995), one has representation (9) with Ac,(z,y) = 5016’ (x,y), where lg,(z,y) =
log cy(7,y) and fe, = Ec, [{4¢, ({(, Y)}?], with €, = 0lc,/96. An application of Propo-
sition 1 shows that ©,, pr, = \/n(6, pr, — 0) converges in law to a normal distribution with
variance 0%, (Cy) = ﬁé@zvar{ﬁ’cg (X,Y) —Wey1(X) — We, 2(Y)}, where

1 1
Wy () = / /O O, (@, y)0, 1 (2, y)co(z, y)ddy



and

1 1
Wy 2(u) = /0 / 0 (2,9, (., y)co(,y)dady,

with £, 1 (2,y) = 0, (v,y)/0x and L, ,(2,y) = lc,(x,y)/y. The asymptotic mean is

ppr(Cy, D) = ﬁE;ED {tc,(X,Y)} — 5591]309 {lc,(X,Y)} = 5591ED {tc,(X,Y)},

since by Lebesgue’s dominated convergence theorem,

1 1 ) o 1 1
Eg, {ﬁ’ce(X,Y)}z/o /0 ¢o(r,y) do dyz%/o /0 co(x,y) da dy = 0.

3.2. Local behavior of the goodness-of-fit statistics

The first theoretical result of this section establishes the large-sample behavior of C,, under
the sequence (Qs,),~,- It is assumed that the estimator of § is either of the form (9) or
based on the inversion of Kendall’s tau.

Proposition 2

Suppose condition (8) and Assumptions Ay-As hold and assume that ©, = /n(6, — )
converges in law to © = © + 6u(Cy, D) under the sequence (1), where © is the limit in
law of ©y under Ho. Then under (Qs,), >, the empirical process C, = /n(Cp — Cy )
converges weakly to

C~:C+5{D_ CG _N(CG7D)C'9}7
where C is the weak limit of Cp, under Hy and Cy = 0Cy/00.

Remark. As one may expect, a sequence of the form Qs = Cy,;, yields absolutely no
power for statistics based on C,, since Q;, € F in that case. Indeed, as one can deduce from
computations made in the proof of Proposition 2, condition (8) enounced in van der Vaart
& Wellner (1996) implies that C, g converges to Cy +6Cy. Moreover, since O, converges to
©+4 in that case, \/n(Cy —Cy) converges to (© +8)Cy, so that C, = Cp, 90— Vn(C; —Cy)
converges to C, i.e. to the same limit as under Hy.

The asymptotic local behavior of the moment-based goodness-of-fit statistics (6) can easily
be obtained as consequences of Proposition 1. This is the subject of Proposition 3, whose

straightforward proof is omitted.

Proposition 3
Suppose condition (8) holds. Then under (Qs, ),>
(1) Snl ~ ‘91 +90 {:up(oev D) - IU’T(097 D)};

(ii) Sp2 ~ So + 6 {,(Cy, D) — ppr(Cy, D)};

(iii) Spz ~> S3+ 6 {MT(CQ,D) - /,LPL(C@,D)}.



This result implies that the limiting distribution of S,;, 7 = 1,2,3 under the contiguous
sequence is normal with some mean 61 (Cy, D) and variance 0']2-(09). Aslong as u(Cyg, D) #
0, a goodness-of-fit procedure based on S,,; will yield power locally.

3.8. Shih’s statistic under contiguity

The asymptotic behavior of S,4 under the contiguous sequence (Q(;n)n21 will follow from
an application of Lecam’s third lemma and the asymptotic representation (7). The result
is summarized in Proposition 4.

Proposition 4
Under the contiguous sequence (Qs,,),~1, the goodness-of-fit statistic Spa converges in law
to a normal distribution with variance o3(Cp) and mean d11(Cy, D) — d12(Cy, D), where

m(Co, D) = 4(0+2)*{Ep(Cy) — Ec, (Co)}

11
n2(Cy, D) = (0+1)(0+ 2)/0 /0 {d(u,v) — cg(u,v)} log Cyp(u,v)dudv

11
- 0+ 1)2/0 /0 {d(u,v) — cg(u,v)} log uvdudv.

4. Local power comparisons

In this section, the asymptotic power of the goodness-of-fit tests based on V, ny and
Sn1s--.,Spa are investigated under alternatives of the form (1). Here, C' and D are
chosen to be in the same family with different levels of dependence. In other words, local
alternatives of the form Qj, (z,y) = (1 — 6,)Co(z,y) + 6,Cy (z,y) are considered, where
0 < #'. Tt is assumed that € is a dependence parameter for the family {Cy;0 € M}, i.e.
Co(z,y) < Cyp(z,y) for all (x,y) € [0,1]?. This requirement is fulfilled for most families of
copulas. The above mixture distribution can represent a setting where the data generating
process stays in the same family over time but the dependence strength suddenly changes,
c.f. regime-shifting models. Structural changes of this kind can occur in mean-reverting
processes such as those driving oil and other commodity prices, where the dependence
pattern, i.e. the copula family, remains the same over time but the strength of this link
becomes significantly stronger or weaker at some moment.

The following analyses will consider local distributions involving mixtures of Clayton,
Frank, Gumbel-Barnett and Normal copulas whose analytical expressions are given in
equations (13)—(16) to be found in Appendix B.

4.1. Efficiency of the empirical copula process under various estimation strategies

Here, the influence of the estimation strategy on the power of the Cramér—von Mises
statistics is investigated under local sequences. Here and in the sequel, C, n ,, Cp N 7
and C,, n,pr, refer to the empirical copula goodness-of-fit process with the estimation of ¢
based respectively on Spearman’s rho, Kendall’s tau and the pseudo-likelihood approach.

Similarly, V¥ \, V7  and Vf k are the associated Cramér—von Mises functionals.

8



Table 1: Drift terms for the estimators based on Spearman’s rho, the pseudo-
maximum likelihood and Kendall’s tau under mixtures of Clayton, Frank, Gumbel—
Barnett and Normal copulas

TC, ™ Model o UprL Lhr Model o UprL Lhr

0.1 0.2 0.244 0.250 0.030 0.901 0.926 0.111
0.1 0.3 0.475 0.487 0.059 1.789 1.815 0.231
0.1 0.4 0.692 0.697 0.086 2.615 2.704 0.333
0.1 0.5 Clayton 0.889 0.882 0.114 Frank 3.385 3.519 0.435
0.4 0.5 0.527 0.544 0.067 1.319 1.381 0.164
0.4 0.6 0.996 0.995 0.128 2.436 2.619 0.315
0.4 0.7 1.384 1.393 0.183 3.351 3.810 0.452
0.4 0.8 1.679 1.786 0.228 4.021 4.762 0.548
0.1 0.2 0.099 0.101 0.013 0.154 0.154 0.019
0.1 0.3 0.192 0.198 0.025 0.301 0.302 0.037
0.1 0.4 0.281 0.290 0.037 0.440 0.443 0.054
0.1 0.5 Gumbel— 0.485 0.379 0.049 Normal 0.565 0.572 0.071
0.4 0.5 Barnett 0.096 0.101 0.016 0.120 0.123 0.017
0.4 0.6 0.179 0.195 0.029 0.226 0.228 0.032
0.4 0.7 0.250 0.282 0.044 0.312 0.315 0.046
0.4 0.8 0.303 0.797 0.068 0.377 0.387 0.062

According to Proposition 2, the weak limits of the empirical copula goodness-of-fit
processes Cp N,p, Cn N+ and C, v, pr, under the contiguous sequence ( Qén)nzl are

Co=Cp+0(g—1pCo), Cr=Cr+6(g—pu-Cq) and Cpp=Cpr+0g—puprCo),

where C,, C- and Cpr, are the respective limits under Hy and g(x,y) = D(x,y) — Co(x,y).
Computations of p,, pr and ppy, are detailed in Appendix B for mixtures of Clayton,
Frank, Gumbel-Barnett and Normal copulas. The results are reported in Table 1. Gener-
ally speaking, these drift terms are higher for ©,, , and ©,, p, than for ©,, ;. This indicates
that the estimator based on Kendall’s tau is more robust under perturbations of Hj of the
type Qs, , which is not necessarily a good property for goodness-of-fit testing where one
wants to detect departures from H.

There is no hope to obtain explicit representations for the asymptotic distributions of
Vﬁ N V; N and V N and consequently for the associated power curves. A procedure to
overcome this dlfﬁculty is explained next in order to compute the local power curve of the
Cramér—von Mises tests. For simplicity, only the case involving V? N I8 detailed.

First note that under (Qs, ),,>1,

n, WVP—// (2, y) dmdy—/ / {Cp(z,y) + h,(x, y)}? dady,

where h,(z,y) = D(z,y) — Co(x,y) — up(Cg,D)C’g(:p,y). Hence, for large values of n and



N, an approximation is given by

- 1 1
Vin= /O /0 (Conp(,y) + 6hy(z, y) 2dady,

where Cp, v, is the empirical copula goodness-of-fit process where ¢ is estimated through
an inversion of Spearman’s rho. One can see that V' . =V’ . +26V; + 82Vs, where

1 1
T / / o (@, 5)Co.o (@, y)dady
0 0

1 n 1 1 1 1
= ﬁz_;/n/s ) hp(w,y)diﬂdy—x/ﬁ/o /0 hp(2,9)Cy, (2,y)dedy

and

- | 1 / ' (hy(9))? dady.

In Figure 1 and Figure 2, the local power curves of the Cramér—von Mises test statistic
computed under the three considered estimation strategies using the above approximations
with n = 2500 and N = 2500 are reported under mixtures of Clayton, Frank, Gumbel—-
Barnett and Normal copulas. The strength of the dependence of the null copula C' and
of the perturbation copula D, as measured by Kendall’s tau, are (r¢,7p) = (0.1,0.5) in
Figure 1 and (7¢, 7p) = (0.4,0.8) in Figure 2.

It is first interesting to note that surprisingly, the choice of the estimator has a significant
impact on the local power curves in almost all cases considered, except under Normal
mixtures. Under Clayton alternatives, the conclusions are the same in Figure 1 and
Figure 2, namely that Vj y has a significantly much larger local power than its two com-
petitors. Overall, Vg n is the least powerful locally. Probably due to the fact that the
drift terms fi; associated to the estimation by Kendall’s tau are small (see Table 1), V[
performs generally very well, especially in the case of small level of dependence, i.e. for
(tc,7p) = (0.1,0.5). For higher degrees of dependence, Vi L is often better than Van
and constitutes a good choice under all scenarios, except for Clayton mixtures.

4.2. Comparison of the empirical copula process with the moment-based statistics

In view of Propositions 3 and 4, the asymptotic local power curves f(i,...,034 of the
goodness-of-fit tests based on S,1,...,Sus are of the form
015 (Cy D)'} { ‘5/#(09 D)
(6,09, D) =1 =P 2,9 — | 2|0 4 DS —2/9 — | — 2| b, 10
/8]( 6 ) { /2 ‘ O'](Cg) /2 O'J(CQ) ( )

where 2,5 is the (1 — a/2)-th percentile of a N(0,1) distribution. Here, 1 = p, — pur,
M2 = [y — WPL, #3 = pir — pipr and g = 11 — 2. In view of equation (10), the local power
of the test based on Sy,; only depends on the absolute value of the ratio u;(Cy, D)/0;(Cy),
i.e. the asymptotic local efficiency. Some values of u1, po and ps are reported in Table 2
under the four choices of mixture distributions. The highest local efficiencies, i.e. the one
that yields the most power locally among the three, are identified in bold.
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Figure 1: Asymptotic local power curves of the tests based on VT’; ~» Vi and V,lz L
under mixtures of (a) Clayton, (b) Frank, (c) Gumbel-Barnett and (d) Normal
copulas with 7o = 0.1 and 7p = 0.5.

Table 2 establishes a clear picture of which statistic is the best under a given scenario
of mixture distributions : for Clayton, Gumbel-Barnett and Normal mixtures, S,; is the
most powerful locally, while S,,3 is the best for local mixtures of Frank copulas. The test
statistic Sp2 is very poor in all cases, except when (7¢,7p) = (0.4,0.8) under Gumbel-
Barnett alternatives. It is also interesting to note that under Clayton mixtures, Sy
performs better than Shih’s statistic S,4, even if the latter is specifically conceived for this
particular case. To come to this conclusion, note that |u4|/o4 = 0.655 when (7¢,7p) =
(0.1,0.5) and |p4|/04 = 0.347 when (7¢,7p) = (0.4,0.8).

Figure 3 compares the local power curves of S,,1, S,2 and S,,3 to the best statistic among
Vn,N,p» VnN, and V, y pr according to the results of subsection 4.1. Only the case
(t¢,7p) = (0.4,0.8) is considered. For the mixture of Clayton copulas, the goodness-
of-fit statistic of Shih, suitable only for this family, is also investigated.

The test statistic S,1 exhibit high power locally in all cases, while S,3 also performs
very well. The most surprising discovery here is the rather poor performance of the
Cramér—von Mises statistics compared to the very simple, asymptotically normal moment-
based statistics. These conclusions must however be treated with care since the nature of
the alternative distributions considered could have favored the moment-based statistics.
Nevertheless, the latter deserve further investigations under other types of alternatives.
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Figure 2: Asymptotic local power curves of the tests based on VT’; ~» Vi and VTJ: L
under mixtures of (a) Clayton, (b) Frank, (c) Gumbel-Barnett and (d) Normal

copulas with 7o = 0.4 and 7p = 0.8.

Also, multivariate extensions of Sy1,...,S4 could be considered as serious competitors
to Vz N> Vo and VTILD JLV, the latter being very costly in terms of computing time.

In some cases, e.g. in panel (b) of Figure 3, it is difficult to decide whether S,,5 performs
better than Vrlj JLV, locally. A way to circumvent this problem consists in computing some
measure of asymptotic relative efficiency. This idea is developed in the next section.

5. Asymptotic relative efficiencies

5.1. A new ARFE measure

For a goodness-of-fit statistic whose limiting distribution is normal with mean du(Cy, D)
and variance 02(Cy), the associated local power curve 3(d, Cy, D) is an increasing function
of u(Cy, D)/o(Cy, D) for all fixed values of § > 0. It thus seems natural to compare the
efficiency of two such statistics S,,; and S, via Pitman’s measure of asymptotic relative
efficiency (ARE), namely

_ [ 1(Co. D)/a;(Co) \?
ARgPitman(Snj7S”k) o {Mk(CQ7D)/O-k(C9)} '
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Table 2: Asymptotic local efficiency terms for the test statistics S,1, S,o and S,3
under mixtures of Clayton, Frank, Gumbel-Barnett and Normal copulas

Mixture Snl Sng 8n3 Mixture Snl Sng Sng
Tc, Tp | model  |ml|/o1 |pe|/os |ps|/os || model  |ul|/on  |po|/o2 |wsl/os
0.1 0.2 1.627 0.006 0.227 3.329 0.065 4.269
0.1 0.3 3.163 0.013 0.442 6.566 0.067 8.298
0.1 04 4.608 0.009 0.632 9.617 0.230 12.420
0.1 0.5 Clayton 5.894 0.005 0.794 Frank 12.432 0.346  16.155
04 0.5 0.762 0.007 0.234 1.162 0.039 1.873
04 0.6 1.438 0.000 0.426 2.134 0.115 3.547
04 0.7 1.989 0.004 0.594 2.916 0.290 5.169
04 0.8 2.403 0.046 0.765 3.494 0.468 6.487
0.1 0.2 1.920 0.006 0.289 3.971 0.000 0.444
0.1 0.3 3.728 0.019 0.568 7.765 0.003 0.871
0.1 04 5.446 0.029 0.831 11.353 0.010 1.278
0.1 0.5 | Gumbel- 9.732 0.338 1.084 Normal 14.529 0.023 1.646
0.4 0.5 Barnett 0.795 0.017 0.361 1.459 0.011 0.446
04 0.6 1.491 0.056 0.706 2.748 0.007 0.824
04 0.7 2.048 0.112 1.012 3.768 0.011 1.131
04 0.8 2.336 1.725 3.099 4.462 0.036 1.367

In bold, the most powerful statistic locally among S,1, Sne and S,3

However, it is not entirely clear how to extend this measure in the case when the limiting
distribution of a test statistic is no longer normal, which is the case with many of the
goodness-of-fit statistics. A generalization of Pitman’s measure proposed by Genest et al.
(2006¢) and Genest et al. (2007) is

— . Bs,;(6) = Bs,;(0)

ARESus Set) = [0 5 &)~ B, 0)
in terms of the local power functions fs,;, fs,, of two tests S,; and S,x. For most
cases of interest, however, this measure requires the derivatives of the power curves in a
neighborhood of 4 = 0. Since the asymptotic local power functions of the tests based on
Vn,N,p» Vn,N,7 and V,, n pr, admit no explicit representations, this causes a serious problem
when trying to apply the latter definition.

Here, another generalization of AREPpitman iS proposed :

N s, @) a6
ARE (Spjs Sni) = {A}linoo sz{l —ﬁsnj(é)}d5} |

(11)

The first motivation for such a definition is the possibility to estimate fOM {1 — Bs,; (5)} do

and fOM {1 = Bs,,(6)} dd when accurate approximations ﬁgnj and [§3nk are available. This

is the case for the power curves of the tests based on Vi N VN and Vrlj JLV To be spe-

cific, suppose 3(5) is available at the points iM/N, i = 1,..., N, for sufficiently large
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Figure 3: Asymptotic local power of the Cramér—von Mises tests and of S,1, Syo,
Sy and S,y under (a) Clayton, (b) Frank, (¢) Gumbel-Barnett and (d) Normal

mixtures with 7« = 0.4 and 7p = 0.8.

N in order to achieve some numerical accuracy. Upper and lower approximations of
M
o {1—ps,,(0)} dé are

N . N-1 .
AL () e AR )
= =0

and the chosen approximation, provided M is selected such that B (M) =1,is

N-1 )
L+ 1s M A (1M M/(1—-«a
== 1-4(= = .
SN (R) R (57
Another interesting feature of ARE(S,j, Spi) is the fact that it generalizes Pitman’s notion

of asymptotic relative efficiency. To see this, let §(0) = 1 — ®(z4/2 — 6p) + P(—24/2 — 1)
and compute

/0{1—5(5)}d5 = /0 <I>(za/2—5,u)d5—/0 P (—z4/2 — Op) do

1 Za/2 —Za/2 1 Ra/2 o
= — {/ O (z)dx —/ @(m)dx} = —/ O(x)dx = Zas2,
T O oo T 7
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As a consequence, one has

1$(Co, D) }‘1 12)

/0 {1- 5,(6,Cy, D)} d6 = 205 { pE

for local power functions of the form (10). Computations of ARE for some of the goodness-
of-fit statistics encountered in this paper are provided in the next subsection.

5.2. Local efficiency comparisons

In all situations considered in subsection 4.2, the best moment-based statistic locally
outperform the best Cramér—von Mises statistic. Hence, it seems useless to compare the
latter in terms of their asymptotic relative efficiency. However, since the power curves of
Vg N Vfl’ N and Vi ]LV are often very close to each other, such computations could be very

interesting. They are presented in Table 3.

Table 3: Estimated values of lim;_ fOM{l — (3(d)}dé for the goodness-of-fit statis-
tics V) x, Vi v and VI and asymptotic relative efficiencies under mixtures of Clay-
ton, Frank, Gumbel-Barnett and Normal copulas.

Mixture lmpz— oo fOM{l — B(6)}ds Asymptotic relative efficiency
model TCy TD Vﬁ N ;,N Visz (V’rpl N> T‘I;,N) (VZ N> Vi%\r) ( ;,Nv Visz)
Clayton 0.1 0.5 | 12.018 2.540 12.618 0.211 1.050 4.968
0.4 0.8 | 23.469 8.349 26.091 0.356 1.112 3.125
Frank 0.1 0.5 17.464 2.381 17.594 0.136 1.007 7.389
0.4 0.8 29.483 27.079 8.670 0.918 0.294 0.320
Gumbel- 0.1 0.5 5.954 2.506 16.143 0.421 2.711 6.442
Barnett 0.4 0.8 30.369 9.282 5.475 0.306 0.180 0.590
Normal 0.1 0.5 3.142 2.491 3.150 0.793 1.003 1.265
0.4 038 8.390 8.527 8.609 1.016 1.026 1.010

These computations show, among other things, that V; ~ is generally more powerful than
Vf’ k for low dependence alternatives, i.e. close to independence. An opposite conclusion
arises for mixture of high dependence copulas, namely when (7¢,7p) = (0.4,0.8). The
performance of Vn{) ]\L, and Vyf ~ are quite similar for low dependence, except under Gumbel-
Barnett mixtures. Overall, 7VnT’ n seems the best choice close to the independence copula,
while Vnp 1{7 performs well under high levels of dependence.

Look7ing back at panel (b) of Figure 3, it is difficult to decide whether S5 performs
better than Vrlj JI(, Even though the local power curve of Vrlj JI(, reaches 1 more quickly, the
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asymptotic relative efficiency is given by ARE(VTILD, ]I<778n2) = 0.950, which supports the
choice of S;9 if a mixture of Frank distributions is suspected as a possible alternative.

6. Sensitivity in small samples

This section is devoted to the sensitivity in small samples and under fixed alternatives of
the test statistics encountered in this paper, namely Vz N Vi T}Z ]LV, Sn1, Sn2, Sps and
Sn4a. The main goal is to relate the asymptotic local éﬂiciency results of Section 4 and
Section 5 with empirical situations. In subsection 6.1, the specific influence of the estima-
tors on the power of the Cramér—von Mises statistics is investigated. In subsection 6.2,
comparisons with the moment-based statistics are made. These results will be paralleled
with those presented in subsections 4.1 and 4.2 under contiguous sequences.

6.1. Influence of the estimators on the power of the Cramér—von Mises statistics

It was seen in subsection 4.1 that the asymptotic local powers of the goodness-of-fit tests
based on the empirical copula process are sensitive to the choice of the estimator of the
dependence parameter, at least under the mixture distributions considered. In this section,
the ability of Vf; N+ Vi and Vf’ k to reject the null hypothesis is first examined under
fixed alternatives and many sample sizes. The results can be found in Tables 4-7. First
note that all 5% nominal levels are maintained, keeping in mind a margin of error of the
magnitude of 1% when estimating proportions from 10 000 replicates.

When Clayton’s family of copulas is in the null hypothesis, one can see from Table 4 that
VZ’ n performs very well against all alternatives, especially in small samples, while Vfl’ N 18
almost as powerful. The latter are significantly superior to Vrlj ]I(, under Gumbel-Barnett
alternatives, especially in small samples. The performance of VTILD JI(, however surpasses that
of V¥  and V;, v under Frank and Normal alternatives, and this advantage is particularly
marked for higher degrees of dependence.

Things are much simpler in Table 5 when testing the membership to Frank’s family,
where the three considered estimation strategies yield almost the same power for the
Cramér—von Mises statistics. For the null hypothesis of belonging to Gumbel-Barnett’s
class, the statistic VTILD JI(, is remarkably better than its two competitors under Frank and
Normal alternatives, éspecially for large sample sizes, as one can notice from the entries
in Table 6. An opposite conclusion must however be made under Clayton alternatives,
where Vf; N and Vo are slightly better.

Finally, the most powerful statistics for testing the Normal hypothesis are VZ’ Ny and

V,, y under Clayton alternatives, while Vi ]LV is the best choice under observations that
come from the Frank copula. Here again, the performance of the latter increases as the
sample size becomes larger.

In a second series of analyses, the power of the Cramér—von Mises statistics under
mixture distributions of the type Qs, = (1 — 6,)Cyp + 6,Cp have been considered for
samples of size n = 500. The corresponding empirical power curves are presented in
Figure 4. In this setting, 100 x §/v/500 % of the observations come from the distribution
Clyr, so the power increases with §. However, from a certain threshold, the observed powers
suddenly decreases toward the nominal level. This occurs because Cy also belongs to the
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Table 4: Estimated percentage of rejection of the null hypothesis of belonging to
VP%Vu th Sn2

Clayton’s family for the goodness-of-fit tests based on

and S,3 under fixed copula alternatives.

n

P T
V N Y N>

n,

‘H1: Clayton ‘H1: Gumbel-Barnett
n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3
100 | 0.10 5.0 4.5 42 32 34 6.2 224 202 120 2.7 11.2 6.0
0.15 5.7 5.0 52 3.1 4.2 7.2 38.7 36.6 24.0 23 18.6 11.0
0.20 6.0 5.5 56 2.8 4.5 6.8 55.4 53.3 38.6 1.4 276 19.1
250 | 0.10 5.1 4.6 5.1 39 49 6.1 37.7 36.1 26,6 24 33.8 26.6
0.15 5.3 5.1 50 4.0 49 59| 654 64.6 53.2 1.7 582 499
0.20 5.1 5.3 5.1 3.1 5.1 59| 86.2 855 77.7 1.1 780 745
500 | 0.10 5.0 5.0 43 35 5.1 5.3 57.1 54.9 46.6 1.3 64.8 59.8
0.15 5.6 5.1 48 48 49 571 8.6 862 79.9 1.4 90.1 88.2
0.20 5.0 5.2 53 3.6 5.1 5.8 || 97.5 973 95.6 1.1 984 98.2
1000 | 0.10 5.1 5.1 4.7 3.0 5.2 5.4 73.3 73.8 697 0.6 90.5 89.9
0.15 4.8 5.3 53 5.0 5.5 57 974 975 96.0 0.8 99.7 99.7
0.20 5.1 5.3 53 4.8 49 52 99.9 100 999 22 100 100
2500 | 0.10 4.7 4.7 6.2 42 48 52 90.1 89.8 90.5 0.4 99.9 99.9
0.15 4.8 4.8 55 4.7 43 46| 999 999 999 0.3 100 100
0.20 4.5 5.3 5.5 58 5.9 5.2 100 100 100 13.0 100 100
‘H;: Frank ‘H1: Normal
n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3
100 | 0.10 | 12.8 11.6 8.1 39 7.5 3.8 123  11.2 6.7 34 56 3.1
0.15| 208 192 139 43 11.0 4.8 20.2 184 115 36 80 3.9
0.20 | 31.3 295 239 51 176 9.3 294 269 179 32 115 6.1
250 | 0.10 | 18.8 183 17.8 4.7 240 164 186 173 127 4.0 174 114
0.15| 36.0 34.8 36.5 7.3 44.0 34.2 33.0 323 255 53 294 21.1
0.20 | 55.7 54.6 583 9.3 64.7 56.5 49.7 478 41.2 5.0 44.3 36.1
500 | 0.10 | 28.7 27.1 320 5.3 499 428 25.8 24.6 208 3.9 358 29.1
0.15| 54.5 529 61.3 102 81.2 754 | 486 46.9 43.6 7.0 61.4 53.7
0.20 | 77.1 76.1 84.7 14.1 953 93.6 | 69.7 684 66.7 7.9 81.8 78.0
1000 | 0.10 | 37.3 37.8 50.5 5.5 81.4 78.2 33.8 33.0 355 39 63.6 595
0.15| 72.3 723 835 157 98.7 98.1 66.7 65.8 65.8 10.2 92.5 89.4
0.20 | 924 928 976 25.0 100 100 || 88.2 87.3 894 152 99.0 98.8
2500 | 0.10 | 50.2 485 73.3 9.0 99.6 99.6 || 43.4 424 524 58 96.1 95.9
0.15| 8.9 88.6 96.5 205 100 100 || 83.5 82.2 83.0 14.0 100 100
0.20 | 99.1 99.2 999 404 100 100 || 97.5 97.8 98.6 28.7 100 100
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Table 5: Estimated percentage of rejection of the null hypothesis of belonging to
Frank’s family for the goodness-of-fit tests based on Vfl, N

S,,3 under fixed copula alternatives.

T VPL

n,N»

n,N» Snlu 8n2 and

‘H1: Clayton ‘H1: Gumbel-Barnett
n T VZN ;,N Vﬁ%\f Snl Sng Sng VZ N 771—,N Vf;%v Snl Sng 8n3
100 | 0.10 7.1 6.4 6.4 4.0 1.1 6.5 10.5 9.6 10.0 3.0 1.0 6.5
0.15| 11.3 10.2 104 3.6 1.3 8.3 15.2  14.2 14.6 2.4 1.0 8.5
0.20 | 16.3 14.8 15.5 2.6 1.1 10.1 173 17.0 17.3 1.8 1.3 11.0
250 | 0.10 | 12.7 12.0 129 3.2 1.6 9.4 126 12.8 129 2.1 0.8 9.6
0.15 | 24.8 24.8 26.0 2.3 1.4 15.1 19.7  19.6 20.3 0.9 1.6 154
0.20 | 43.4 43.5 43.7 1.4 23 189 28.3 29.6 29.6 0.5 3.7 20.3
500 | 0.10 | 22.6 22.1 21.7 28 1.1 159 16.5 16.2 16.0 1.0 1.0 16.1
0.15 | 47.3 471 47.0 1.8 2.4 25.9 28.3 28.6 28.8 0.5 5.1 27.1
0.20 | 73.2 742 737 1.0 6.5 31.8 42.8 457 45.1 1.0 144 34.1
1000 | 0.10 | 36.4 39.3 38.5 2.2 1.5 26.8 214 229 227 04 3.6 29.0
0.15| 72,5 731 T72.1 1.3 8.4 41.7 || 41.1 428 41.9 0.9 19.2 45.8
0.20 | 92.8° 929 93.2 1.3 18.0 47.9 60.6 62.1 63.9 8.0 37.1 54.7
2500 | 0.10 | 53.2 52.2 519 1.4 85 51.1 26.0 26.2 26.5 1.0 26.3 59.5
0.15| 90.6 91.1 91.5 1.1 323 74.8 53.6 56.0 56.9 19.8 66.0 824
0.20 | 99.6 995 994 109 54.1 79.9 799 79.7 81.2 659 856 88.7
‘H;: Frank ‘H1: Normal
n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3
100 | 0.10 6.0 5.6 5.5 4.6 2.3 4.3 6.0 5.1 54 3.8 2.1 4.7
0.15 6.0 5.7 56 4.5 2.8 4.5 6.4 5.7 5.7 3.6 2.5 5.0
0.20 5.4 5.4 5.2 4.5 3.3 4.7 6.7 6.4 6.7 3.3 2.8 5.9
250 | 0.10 4.8 4.9 4.9 4.2 3.1 4.5 6.2 5.6 6.0 3.3 32 5.3
0.15 4.8 4.7 4.7 3.9 3.4 4.6 6.6 6.0 6.3 28 3.5 6.6
0.20 4.5 5.1 4.8 4.2 3.6 4.7 8.3 7.7 7.9 2.0 3.0 7.8
500 | 0.10 4.6 4.6 4.5 3.9 4.1 4.6 6.2 5.6 5.4 27 37 6.6
0.15 4.7 4.9 46 45 4.2 5.2 8.0 7.5 7.6 2.2 4.3 8.1
0.20 5.0 5.3 5.1 4.7 44 5.1 10.8 114 10.1 1.6 4.1 8.6
1000 | 0.10 4.3 5.9 5.1 4.7 47 5.3 7.3 7.6 6.8 2.5 4.1 8.2
0.15 5.4 5.7 5.1 5.0 5.0 5.1 9.8 10.3 9.2 1.6 3.9 8.9
0.20 4.8 5.1 5.1 4.7 4.9 4.7 14.7 14.3 13.8 1.0 3.5 8.8
2500 | 0.10 5.3 5.1 43 46 4.6 44 7.6 7.4 6.8 1.7 4.5 9.0
0.15 5.0 5.5 50 4.8 5.1 5.7 109 11.3 11.2 1.2 4.8 11.2
0.20 5.4 5.0 53 4.2 4.7 4.5 172  16.2 17.3 0.6 4.0 9.5
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Table 6: Estimated percentage of rejection of the null hypothesis of belonging to

Gumbel-Barnett’s family for the goodness-of-fit tests based on VT’; N VN V,ﬁ ]LV,

S,1, Sne and S,,3 under fixed copula alternatives.
‘H1: Clayton ‘H1: Gumbel-Barnett

n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3

100 | 0.10 9.3 7.9 5.4 6.2 16.5 5.8 3.6 3.7 4.9 5.7 5.9 7.0

0.15 18.8 16.8 12.1 7.6 224 7.2 4.7 4.3 5.2 5.6 5.1 6.3

0.20 | 31.5 29.9 22.2 7.8 26.7 9.6 4.9 4.7 5.3 5.3 4.4 4.8

250 | 0.10 | 26.8 25.1 20.7 8.4 36.3 24.2 4.6 4.5 5.4 5.5 5.8 5.9

0.15 53.9 524 457 9.4 53.1 384 4.8 4.9 4.9 4.9 5.0 4.8

020 789 775 70.6 104 67.9 55.1 5.2 5.0 5.0 5.1 4.7 4.6

500 | 0.10 | 48.8 48.0 41.7 9.9 598 518 4.7 5.1 4.8 4.8 4.9 4.8

0.15 | 83.2 83.0 786 124 83.8 78.1 5.1 5.0 5.6 4.1 5.0 4.7

0.20 | 96.9 96.8 95.6 13.0 94.2 923 4.9 4.4 4.7 4.4 5.1 4.9

1000 | 0.10 | 73.5 724 69.1 13.6 888 85.9 5.0 4.8 5.6 4.8 4.9 4.8

0.15 97.5 97.0 96.7 19.3 98.9 987 5.1 4.9 5.3 4.5 4.8 5.1

0.20 100 100 999 225 99.9 99.9 5.3 4.9 5.3 4.6 5.0 4.8

2500 | 0.10 | 92.6 91.6 904 16.3 99.9 99.9 5.8 4.9 5.0 3.5 5.6 5.4

0.15 99.9 999 999 350 100 100 5.6 5.2 5.6 4.4 5.2 4.9

0.20 100 100 100 41.7 100 100 5.5 5.0 5.3 5.2 5.1 5.5

‘H;: Frank ‘H1: Normal

n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3

100 | 0.10 4.2 3.8 3.2 7.7 13.2 4.7 4.0 3.6 3.0 7.2 10.3 4.1

0.15 5.4 5.2 5.1 9.7 164 4.6 4.9 4.3 3.8 85 119 3.7

0.20 7.3 7.3 7.1 129 20.1 4.8 5.6 5.0 4.4 9.5 12.2 3.0

250 | 0.10 7.2 7.4 10.1  10.2 27.7 16.5 6.4 6.3 6.6 9.5 184 10.7

0.15 12.8 13.0 18.1 15.3 42.0 26.0 10.4 9.8 9.8 119 253 134

0.20 18.2 184 272 221 55.8 38.8 15.2 13.7 13.6 16.1 32.1 179

500 | 0.10 12.4 129 214 144 48.7 38.8 10.3 10.2 12.0 126 314 224

0.15 22.2 23.1 375 24.1 73.3 63.6 18.3 16.8 19.4 185 473 35.2

0.20 | 36.2 35.4 56.1 36.5 &89.9 84.4 26.4  23.9 28.6  27.7 62.7 49.7

1000 | 0.10 18.7 19.2 36.8 19.5 79.6 74.5 14.9 14.2 20.7 16.9 574 50.1

0.15 37.0 36.1 62.3 388 97.0 95.7 28.1 25.6 355 323 79.8 735

0.20 | 56.9 57.1 819 583 99.7 99.6 41.0 40.7 51.6 50.3 91.1 86.3

2500 | 0.10 | 28.4 255 54.8 258 99.6 99.5 23.1 203 31.8 21.6 94.3 925

0.15 54.7  55.1 81.4 659 100 100 39.8  40.6 54.8 62.1 994 99.2

0.20 | 79.8 79.5 95.2 88.0 100 100 62.6  60.5 72.8 85.1 100 100
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Table 7: Estimated percentage of rejection of the null hypothesis of belonging to
th Sn2

the Normal family for the goodness-of-fit tests based on V) ,

and S,3 under fixed copula alternatives.

T

n,N»

PL
Vn,N?

‘H1: Clayton ‘H1: Gumbel-Barnett
n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3
100 | 0.10 4.8 4.4 45 49 50 6.2 7.1 6.8 7.0 4.1 54 6.7
0.15 7.7 7.5 77 43 39 6.0 10.5 9.6 96 29 5.1 6.9
0.20 | 12.3 122 114 43 4.2 5.9 139 135 135 24 5.1 6.9
250 | 0.10 | 10.5 9.6 9.5 5.0 4.2 6.8 10.3 9.1 9.7 2.8 54 8.3
0.15| 21.7 214 196 45 4.5 7.3 155 156 146 20 55 8.2
020 | 36.6 374 329 32 39 6.5 21.5 214 19.7 1.2 53 8.0
500 | 0.10 | 19.7 20.5 169 48 5.5 8.3 14.1  13.7 128 2.1 6.6 9.6
0.15| 41.3 423 36.7 3.5 58 &7 226 228 19.8 0.8 72 9.5
0.20 | 65.1 654 589 26 53 7.2 329 32.8 28.8 1.6 6.6 8.3
1000 | 0.10 | 33.7 31.8 282 4.6 80 10.5 18.6 16.8 15.9 1.1 9.5 11.7
0.15| 64.3 64.2 59.1 2.7 10.4 12.7 || 31.3 30.2 27.7 1.7 115 12.1
0.20 | 87.8 88.2 84.2 2.6 9.8 11.1 46.0 484 43.4 10.2 10.9 10.3
2500 | 0.10 | 43.2 451 419 3.0 153 17.8 18.1  19.7 18.7 1.6 184 184
0.15| 83.1 &85.1 82.1 3.3 219 232 379 416 37.8 27.0 21.8 18.3
0.20 | 98.6 985 98.0 11.2 258 249 | 61.9 622 59.0 67.0 26.7 18.4
‘H;: Frank ‘H1: Normal
n T VZN ;,N Vs%\] Snl 8n2 SnS VS N 77;7]\[ Vrli%\/ Snl Sng 8n3
100 | 0.10 4.1 4.0 43 52 11.7 74 4.5 4.1 4.1 49 6.0 5.1
0.15 4.5 4.4 5.1 5.9 15.6 10.0 4.8 4.7 44 49 56 4.7
0.20 5.9 6.1 7.3 7.3 209 14.7 4.7 4.7 50 53 6.3 54
250 | 0.10 5.0 5.0 58 6.1 159 11.2 4.6 4.1 42 5.2 52 5.2
0.15 6.3 6.7 9.7 7.2 256 19.6 4.8 4.9 5.1 5.1 53 5.3
0.20 7.3 7.8 127 94 353 30.2 4.5 4.8 46 49 50 54
500 | 0.10 6.1 6.6 8.1 6.8 22.7 18.2 5.0 5.0 4.5 49 47 54
0.15 7.1 82 132 88 369 315 5.2 5.4 4.7 5.1 52 5.6
0.20 9.5 11.1 20.1 11.1 552 51.2 4.9 4.9 46 52 49 49
1000 | 0.10 7.5 7.1 112 84 349 30.0 6.2 5.2 5.0 5.5 5.3 5.1
0.15 8.7 9.5 195 11.0 59.8 55.3 5.5 5.1 49 54 48 4.6
0.20 | 13.2 14.7 31.5 13.8 822 804 5.0 5.1 54 4.5 5.1 5.1
2500 | 0.10 6.4 7.2  14.1 9.8 63.7 60.7 4.3 5.0 49 45 48 438
0.15| 10.0 11.7 26.7 14.5 91.7 90.5 4.4 5.2 5.1 54 4.8 4.7
0.20 | 17.7 181 451 17.0 99.3 994 5.2 5.1 53 5.0 53 5.7
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family of copulas under Hy. One may have expected, however, that the powers would start
to decrease at the middle point, i.e. when § = v/500/2 &~ 11.2. The observed asymmetry
in all four cases is probably an indication that the goodness-of-fit tests are better to detect
discrepancies from Hy when the data come from a copula with a high level of dependence.
The fact that 6’ > 0 probably explained that the middle point is skewed to the right.

As expected, the differences in power between Vp N Vi N and V N are less apparent in
small sample sizes than it was asymptotically (see Flgure 2 to compare). Nevertheless, the
conclusions here are very similar to the asymptotic situation, except that the performance
of V¥ v 18 not as bad as for n — oo under Clayton and Gumbel-Barnett mixtures. Briefly,
the ch01ce of the estimator doesn’t seem to have a significant influence under Gumbel—
Barnett and Normal mixtures, while for Clayton mixtures, the pseudo-likelihood estimator
is not recommended. The latter is however the best choice under Frank mixtures.
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Figure 4: Power curves for the tests based on VT’; N

V7 v and VP'% under (a) Clayton,

(b) Frank, (¢) Gumbel-Barnett and (d) Normal mixtures with (7o, 74) = (0.4,0.8),

n = 500 and N = 2500.

6.2. Power of the Cramér—von Mises statistics compared to the moment-based statistics
It was seen in subsection 6.1 that the test statistic 1 v Was a good choice for small sample
sizes when testing the goodness-of-fit under the hypothes1s of belonging to the Clayton

family. The ability to reject Hg in that case is almost as good for tests based on S,2 and
Sp3, with a slight advantage to S,2. The power of the latter even becomes larger than
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that of VZ’ y When n > 500 and is often better than the best Cramér-von Mises statistic

in large samples, namely Vi ]LV Note the poor performance of S,1 in all cases considered.

When testing the hypothesis of belonging to the Frank family, S,; and S,2 are bad
choices. However, S,3 is sometimes comparable with the Cramér—von Mises statistics
when the sample size is large, especially under Gumbel-Barnett alternatives.

The null hypothesis of a Gumbel-Barnett family provides an example of a very powerful
moment-based statistic. Here, S,2 is more powerful than the best Cramér—von Mises
statistic, namely V* \ under Clayton and sz k under Frank and Normal copulas. Another
example is given when testing the hypothesis of belonging to the Normal family against
Frank alternatives, where S, and S,3 are clearly the most powerful. The latter are
unfortunately inefficient to detect Clayton and Gumbel-Barnett dependence structures.

A final analysis have been made to compare the power of the tests under Qs =
(1 —0,)Cy + 0,Cp. The results are to be found in Figure 5. Here, the ordering in the
power curves are often quite different to the ones encountered in Figure 3 in the asymptotic
situation. An explanation probably lies in the fact that the moment-based statistics are
especially good in very large samples, and the result is that the latter outclass the Cramér—
von Mises statistics when n — oo. This domination is weaker in moderate sample sizes.
This is particularly evident under Clayton mixtures where the best Cramér—von Mises
statistic outperforms all moment-based statistics. Note here the very poor performance
of §,1, in contrast to the extremely good performance of the same statistic when n — oo.
Under Frank mixtures the moment-based statistics perform very well even for moderate
sample sizes, where they outperform the best Cramér—von Mises statistic. Under Gumbel—-
Barnett mixtures, S, is clearly the best statistic while under Normal mixtures, S,3 is the
best and S, provides a very poor performance.

7. Discussion

In this paper, the local power curves of tests based on Cramér—von Mises distances of
the empirical copula goddness-of-fit process have been investigated and compared to
that of moment-based statistics involving Spearman’s rho, Kendall’s tau and the pseudo-
maximum likelihood estimator. Many discoveries have been made, in particular that the
estimation strategy can have a significant impact on the power of the Cramér—von Mises
statistics, and that some of the moment-based statistics provide very powerful tests under
many distributional scenarios. Also, it seems that the ability of the Cramér—von Mises
statistics to detect departures from Hy is better under fixed alternatives rather than under
mixtures, while an opposite conclusion can be expressed for the moment-based statistics.

In future works, these kind of investigations could also be accomplished for other
popular goodness-of-fit tests like those proposed by Scaillet (2006), Huard et al. (2006)
and Genest et al. (2006a). The latter authors based their tests on Kendall’s process
Kn(t) = /n{Ky,(t) — Kén(t)}’ where Ky(t) = P{Cy(X,Y) < t}, with (X,Y) ~ Cp, is
the bivariate probability integral transformation of Cy and K, is a fully nonparametric
estimator of Kjy. Suitable adaptations of the arguments to be found in Ghoudi & Rémillard
(1998) should enable to establish that K, ~ K 4 d(Lo — pKg) under alternatives of
the type Q;, , where K is the weak limit of K,, under Hy, Ls is the probability integral
transformation of Qg5 and p is the drift term associated to the limit of ©, = \/ﬁ(én —0)
identified in Proposition 1.
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Figure 5: Power of the tests based on V, n, Sni1, Sn2, Sps and S,y when n = 500
under (a) Clayton, (b) Frank, (¢) Gumbel-Barnett and (d) Normal mixtures with
7c = 0.4 and 7p = 0.8

It could also be interesting to exploit the idea of moment-based statistics to test the
fit to families of multivariate copulas. For example, possible estimators of a univariate
parameter 6 are those based on inversions of the multivariate extensions of Spearman’s
rho described by Schmid & Schmidt (2007), namely

Pnx = f(d) 2d/ Cn(u)du -1 and Prx = f(d) 2d/ Cn(u)du —1 ’
(0,1)4 (0,1)4

where £(d) = (d+1)(2¢ —d —1)~!, C,, is the multivariate empirical copula and C,, is the
survival version of C),. Then, the local behavior of the goodness-of-fit statistic

Sn =Vt (Pns) = P (prws) }

where p, and p,,. are the population versions of p, . and p, ., will be a consequence of
that of C,, ¢ that can be deduced from the proof of Proposition 2.

It may be noted that the form of the alternative hypothesis (1) is not the only one
under which asymptotic power curves could be derived. Another possibility is given by

Qs (x,y) = vy ' [C {ws(x), ¥s(y)}],

23



where 15 must satisfy some conditions to ensure that QF is a copula and the perturbation
function 15 is chosen such that 1y(¢t) = ¢t. Then, by arguments similar to that in the proof
of Proposition 2, it would be possible to establish that C,, g ~» Cy 4+ 6QF, where

Q(z,y) = Cro(z, y)vo(x) + Cor(z, y)ho(y) — Yo {Clz,y)} .
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Appendix A : Proofs

A.1. Proof of Proposition 1. Assumption (8) enables to deduce, from Lemma 3.10.11 of
Van der Vaart & Wellner (1996), that the log-likelihood ratio of Qs with respect to Qp
has the asymptotic representation

Z{ (X, Y7) ce<Xz-,Yz->}_5_22"3{d<XﬂYi>—09<Xi=“)}2+0p<1>.

co(X;,Y5) 2n cg(Xi,Y;)

The proofs for (i) and (ii) are achieved in separate steps.
(i) From the asymptotic representation (9), it follows that

1 n
Ona =054+ — Z Acy,10(Xs, Yi) b1 (Xi) + — Z; Acy,01(Xi, Yi)Bnz(yi) + op (1),
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where 5,1(z) = /n{F,(x) — 2} and Bn2(y) = vn{Gn(y) — y}. From Slutsky’s lemma, the
bivariate central limit theorem and arguments that one can find in Ghoudi & Rémillard
(1998), the vector (©,, o, Ly) converges to a bivariate normal distribution with mean vector
and covariance matrix

B —620%(L) B 0%(Cy)  Sua(Cy, D)
"= <0’ 2 > and = ( 5unlCo.D) 502 (Qy) >

where 0%(L) = varc,{d(X,Y)/cy(X,Y)}. One may then conclude, in view of Lecam’s
third lemma, that ©, a is asymptotically normal with mean ouj(Cp, D) and variance
03 (Cy) under the contiguous sequence (Qs, )n>1-

(ii) From H4jek’s projection method (Héjek & Sidék, 1967), one deduces the large-sample
representation

4001 < 1 —7¢,(6)
i il 2C5(X;,Y;) — X; — Y 4+ ——2 1).
@7 Tée(e)ﬁ;{ 09( ) + 2 +OP()

Hence, the vector (©,, L,) converges to a bivariate normal distribution with mean vector
and covariance matrix

o= <0’w> and = ( 5/53(9) 5355((21) ) ’

from which it follows that ©,, , is asymptotically N'(p(6),02) under (Qs, )n>1-

A.2. Proof of Proposition 2. Let (X£n), Yl(n)), ey (Xr(Ln), Yn(")) be a random sample from
Qs,. Write €5 =€) — BYY, where C\") = \/a(CY" — Cg) and BY” = /i(Cyy — Cy).

Here, HA,(L") is the estimator based on the sample from Qs and

e =10 { (F0) @ (6) "}
where

Zl( <3Y(")<t>

i=1
én)(s) = (n)( 1) and feis )( t) = o )(1 t). From van der Vaart & Wellner (1996),
condition (8) implies that " )( ) = /n(Hny v — Cy) ~ H + 6(D — Cp). In particular,
() = Vil E( (@) — 2} = H{ (1) = H(x,1)

and
) = Vil (v) —y} = H(Ly) = H(Ly)
since D(z,1) — Cy(x,1) = D(1,y) — Cyp(1,y) = 0. From Chapter 3 in Shorack & Wellner

(1986), both
(F,S")>_1 () —x

) = s,

sup
0<z<1

26



and

sup ‘Gﬁl”)(y)—y‘ = sup
0<y<1

converge in probability to zero, so that
Jn { (F,§">>_1 - I} w —IH(,1) and Vi { (Gg")>_l - I} e —IH(1,").
Hence, since one can write
i) = mO{(AD) @1 (6) " )]
wvada ((F0) " @ (6) " 0) - e |

= e {(F) @ (68) 0} + ConnleVAHED) o) - 2)
+ Co01 (2, y)vVn{(G) " (y) =y} +op(1),

ot
/N
Q
33

one deduces that C' 9) converges weakly to Cy+ (D — Cy), where Cp = IH — Cy 10lH (-, 1) —
Co011H(1,-) is the hmlt identified, e.g. by Génssler & Stute (1987) and Tsukahara (2005)
under the null hypothesis. The second part of Assumption A5 and the mean-value theorem

enable to establish that B,(ln) converges to OCy = OCy + w1(C, D)C‘g, while the joint
consistency of (Cflne) , B,(qn)) to (Cg4+0(D—Cy), 0Cs+u(Cy, D)Cy) rises from Assumption A;.

Appendix B : Computation of the drift terms

In the case of Clayton, Frank and Gumbel-Barnett copulas, the value of Spearman’s
rho cannot be expressed explicitly in terms of the dependence parameter, and hence the
population value of formula (5) must be estimated through numerical methods. Such is
also the case for

1 1 1 1
ooy (0) = 12 /0 /0 Cola,y)dady, Ep (Co(X,Y)) = /0 /0 Co(z,y)d(x, y)dzdy,

ﬁcez/o 0 I dedy and Ep {f5 (X,Y)} = //

ez y) co(z,y)

where cg(z,y) = 0*Cy(z,y)/0xdy, éo(x,y) = dco(x,y)/00 and Cy(x,y) = dCq(x,y)/06.
Note that for Archimedean copulas, i.e. dependence models of the form Cy(x,y) =
¢51{¢9(a:) + ¢p(y)}, one can show that

d(z,y)dzdy,

b9 () + do(y) — do {C(x,y)}
oy {Co(z,y)} ’

where ¢g(x) = d¢p(2)/00 and ¢j(x) = dpp(x)/dx. The Clayton, Frank and Gumbel-
Barnett copulas are member of this important class of models.

C@($7y) =
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B.1. The Clayton family. The copulas in this class and their associated densities are

C§" (z,y) = (x_e +y T~ 1) e and ¢§"(z,y) = (0+1) (zy) 07" (x_e +y T~ 1>_1/6_2 :

(13)
where § > —1. The associated value of Kendall’s tau is TCQCL(H) =60/(0 + 2), from which
one deduces easily that E¢,(Cp) = (6 +1)/2 and T(’j(’CL(H) =2/(6 + 2)2. Further,

. Cy(z,y) {:13_9 logz +y ?logy

C@(x7y) = 0 x_g + y_g 1 - IOgCQ(.Z',y)} .

B.2. The Frank family. Frank’s copula is given by

Cg(a:,y) _ _% n {1 B (1 — e—em) (1 - e—t‘)y) } | (14)

1—e?

where 6 € R\ {0}. As reported in Frees & Valdez (1999), Spearman’s rho and Kendall’s
tau in this family are expressed by

12 (9 t(2t—0) 4 4 [0 ¢
pcg(9)21+§/0 ﬁdt and 705(0)21—54'@/0 etjdt

Hence, one deduces
12 24 9 t(3t — )
/ - = I\ 7T
pCeF(G)_H(e"—l) 94/0 -1 4

and ;
4 4 8 t
/
)= =+ —i— — — —dt.
TCoF( ) 02+0(69—1) 03/0 et —1
The other necessary computations, however, must be accomplished numerically.

B.3. The Gumbel-Barnett family. The analytical form of this extreme-value copula (see
Ghoudi et al., 1998) is

1-60
O™ (o) = exp { = (g0 4 gy /1=0) "} (15)

where 0 < # < 1. Computations of the drift terms in this class of models are difficult
and must be done numerically. The only explicit expressions are for Kendall’s tau and its
derivative, namely 7o (0) =0 and 7/c5(0) = 1.

6

B.4. The Normal family. The Normal copula, which arises as the dependence function
associated to the classical normal model, is defined by

N oM (x) 2 (y)
Cy(x,y) = / / ho(s,t)dsdt, (16)
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where 12
(1 _ 92)_ L 2 42
TGXP{—W (S +1 —208t)}

is the standard bivariate normal density with correlation coefficient 6. Despite the implicit
form of Cgl involving the percentile function of a standard univariate normal distribution,
there exists explicit relationships between the dependence parameter 6 and Kendall and
Spearman measures of association. Explicitly,

2 - 6 . (0
7'09(0):;5111 1(9) and pCQ(H)Z;Sm 1<§>7

hg(s, t) =

from which it follows easily that

2sin1(0) + 7 , B 2 , B 6
47T ’ 7—00(9) - T /1 — 92 and ng(e) - A — 92 .

Hence, if D = C’é\ID, i.e. if one considers a mixture of Normal copulas, then

ECe (09) =

sin~'(0p/2) —sin~1(6/2) '

NP(CGv D) = \/m
Also, the density associated to C’é\l is
o (2,y) = ho {07 (@), @7 ()} (@7) (2) (@71) (),

and it is possible to establish that

O (z,y) = & (@,y) _ 0(1—0%) — 0(s* + 1) + (62 4 1)st
e (z,y) (1—062)2

This enables to compute
1,1
Bo {y (¥} = [ [ el e pany

— / / { 0(1 — 62) 9((f2_+9§§§+(92+1)8t}heD(s,t)dsdt

B (1—60% —0(5*+1T?) + (0*+1)ST
Ea | (1) }

s=®~1(z),t=2"1(y) '

)

where (S,T) follows a bivariate normal distribution with means 0, variances 1 and corre-
lation coefficient 0p. Here, Eg,, denotes expectation with respect to hg,. Thus, noting
that Eg,, (5%) = Eg,, (T?) = 1 and Ey,, (ST) = 0p, straightforward computations yield

(62 +1)(0p — 0)
B {loy (X))} = 12 g
Long but similar computations enable to obtain Gc, = 6% + 1 and hence
Op — 0

1rr(Cy, D) = A
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