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Introduction

⊲ Copulae - a popular and flexible way of modelling dependence

⊲ Copula choice may have huge impacts on e.g. capital allocation

⊲ Is the data appropriately modelled by a given parametric copula?

⊲ We propose a new copula goodness-of-fit approach.
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Copulae - Attractive features

2. Copula - Definitions and Theorems

Definition (Copula)

A d-dimensional copula is a multivariate distribution, C, with standard
uniform marginal distributions.

Theorem (Sklar)

Every multivariate distribution F, with margins, F1, F2, . . . , Fd can be
written as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.1)

for some copula C.
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2. Copula - Definitions and Theorems

⊲ Given a random vector X = (X1, . . . , Xd) the copula of their joint
distribution function may be extracted from equation (2.1):

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud )),

where the F−1
i ’s are the quantile functions of the margins.

⊲ The copula is often represented by its density function c(u):

C(u) = P(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud) =

∫ u1

0
. . .

∫ ud

0
c(u)du,
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2. Copula - Definitions and Theorems
⊲ For the implicit copula of an absolutely continuous joint df F with

strictly continuous marginal df’s F1, . . . , Fd , the copula density is
given by

c(u) =
f (F−1

1 (u1), . . . , F−1
d (ud ))

f1(F
−1
1 (u1)) · · · fd(F−1

d (u1))
.

⊲ Hence,

c(F1(x1), . . . , Fd(xd)) =
f (x1, . . . , xd)

f1(x1) · · · fd (xd )
.

⊲ This means that a general d-dimensional density can be written
as

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd )

for some copula density c(·).
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2.1. Copula - Attractive features

⊲ A copula describes how the marginals are tied together in the
joint distribution

⊲ The joint df is decomposed into the marginal dfs and a copula

⊲ The marginal dfs and the copula can be modelled and estimated
separately, independent of each other

⊲ Given a copula, we can obtain many multivariate distributions by
selecting different marginal dfs

⊲ The copula is invariant under increasing and continuous
transformations
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3. Copula Goodness-of-fit Testing

⊲ Determine whether a copula appropriately fits the data.

⊲ Univariate distributions ⇒ e.g. Anderson-Darling test or less
quantitatively using QQ-plot.

⊲ Multivariate domain ⇒ fewer alternatives.

⊲ Copula GOF is a special case of the more general problem of
testing multivariate density models.

⊲ Complicated due to the use of empirical margins. Hence,
P-values are usually found by simulation.
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3. Copula Goodness-of-fit Testing

⊲ Several approaches proposed lately, e.g.
◦ Breymann et al. (2003) - based on the probability integral transform

(PIT)
◦ Genest et al. (2006) - based on the empirical copula and Kendall’s

process

⊲ Dimension reduction techniques reduce the multivariate problem
to a univariate problem.
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3.1. Probability Integral Transform

⊲ Transforms a set of dependent variables into a new set of
independent U(0, 1) variables, given the multivariate distribution.

⊲ A universally applicable way of creating a set of iid U(0, 1)
variables from any data set with known distribution.

⊲ Given a test for multivariate, independent uniformity, this
transformation can be used to test the fit of any assumed model.

⊲ The concept was first introduced by Rosenblatt (1952) and can
be interpreted as the inverse of simulation.
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3.1. Probability Integral Transform

⊲ The idea is to PIT the observed copula, assuming a H0 copula,
and then test for independence. The null hypothesis may be a
parametric copula family.

⊲ An advantage with the PIT in this setting is that the null- and
alternative hypotheses are the same, regardless of the
distribution before the PIT.

⊲ The PIT also enables weighting in a simple way since the data,
under H0, is always iid U(0, 1).

Daniel Berg A copula goodness-of-fit test



Introduction
Copulae

Copula Goodness-of-fit Testing
Results

Application
Summary

Probability Integral Transform
Approach G
Approach B

3.2. Breymann et al. (2003)’s approach: G
⊲ Let Z be an iid U(0, 1)d vector under H0. Now define

YG =

d∑

i=1

Φ−1(zi)
2,

WG = F
χ

2
d
(YG) ,

FG(w) = P (WG ≤ w) , w ∈ [0, 1].

Under H0 FG(w) = w and its density function fg(w) = 1.
⊲ Properties:

◦ Coincides with the approaches proposed by Malevergne and
Sornette (2003) when the latter is based on PIT. Also coincides
with the second approach proposed by Chen et al. (2004).

◦ Implicitly weights the tails of the copula through Φ−1(·)2

◦ NOT consistent, some deviations may cancel out
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3.3. New approach: B

⊲ Extends G, solving the consistency issue by transforming the
vector Z . Decouples deviance measure from weighting
functionality.

⊲ Let Z be an iid U(0, 1)d vector under H0. Define a new vector Z∗

as

Z ∗

i =

(
1 −

(
1 − z̃i

1 − ri−1

)d−(i−1)
)

,

for i = 1, . . . , d , where Z̃ = (z̃1, . . . , z̃d) is the sorted counterpart
of Z and ri is rank variable i from Z .
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3.3. New approach: B

⊲ Next, let

YB =

d∑

i=1

γ(zi ; α) · Φ−1(Z ∗

i )2,

where γ is a weight function used for weighting Φ−1(z∗

i )2

depending on its corresponding value zi , and α is the set of
weight parameters.

⊲ Further let FYB(·) be the cdf of YB , i.e. the cdf of a linear
combination of squared normal variables. Then

WB = FYB (YB),

FB(w) = P (WB ≤ w) , w ∈ [0, 1].

Under H0 FB(w) = w and fb(w) = 1.

Daniel Berg A copula goodness-of-fit test



Introduction
Copulae

Copula Goodness-of-fit Testing
Results

Application
Summary

Probability Integral Transform
Approach G
Approach B

3.3.1. Weighting functionality

The weight function may be of any form, for example:

⊲ Power tail weighting: γ(zi ; α) = (zi − 0.5)α

⊲ Left/Right power tail weighting:
◦ Left power tail: γ(zi ; α) = 1 − z1/α

i

◦ Right power tail: γ(zi ; α) = 1 − (1 − zi)
1/α

⊲ Inverse Student’s t tail weighting: γ(zi ; α) = t−1
ν

(zi)
2
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3.3.1. Weighting functionality
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Figure: The effect of tail weighting.
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3.3.2. Testing Procedure
Suppose we have n independent observations from a d-dimensional copula
X . The testing procedure would then be as follows:

1. PIT X under a H0 copula. This procedure usually involves estimating
the parameters of the H0 copula, bθ. The resulting copula, Z , should be
the independent copula if H0 is true.

2. Then, for each j = 1, . . . , n, do:
⊲ From Z j , compute weights γ(zji ; α),i = 1, . . . , d .
⊲ Compute Z∗

j . These variables are iid U(0, 1)d under H0.
⊲ Compute the univariate variable YBj .
⊲ Given FYB (e.g. from simulations), compute WBj .
⊲ Given WBj compute FBj(w), an iid U(0, 1) vector under H0.

3. Compute some univariate test bT using FB(w) or fB(w).

4. Repeatedly (N times) perform step 1-3 using a simulated observed data
set X∗, simulated from the H0 distribution with parameter bθ. The
resulting N values of bT

∗ form the distribution of T .

5. Compute the p-value, p =
1+

PN
k=1 I( bT ∗≥ bT )

N+1 .
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4. Results

To assess the power of the test we performed so called ’Mixing’ tests:

⊲ CMix = (1 − β) · CGa + β · CAlt , β ∈ [0, 1], CAlt ∈ [CSt , CCl ].

⊲ H0 : Gaussian copula

⊲ PIT under H0 and compute p-value.

⊲ Repeat 500 times to obtain rejection rates as a function of the
mixing parameter β and the alternative copula.
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Figure: The effect of n - the number of observations. G/T mixing, power tail
weighting, d = 2, α = 4, ρ = 0.5, ν = 4, 5% significance level.
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Figure: The effect of d - the dimension. G/T mixing, power tail weighting,
n = 500, α = 4, ρ = 0.5, ν = 4, 5% significance level.
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Figure: The effect of α - the power tail weighting parameter.
Gaussian-Student-t mixing, power tail weighting,
d = 5, n = 500, ρ = 0.5, ν = 4, 5% significance level.
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Figure: G test versus B test for d = 2 and n = 500. No weight and various
power tail weights for the B test. Gaussian-Student’s t mixing, ρ = 0.5, ν = 4,
5% significance level
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4. Results
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Figure: G test versus B test for d = 5 and n = 500. No weight and various
power tail weights for the B test. Gaussian-Clayton mixing, ρ = 0.5, δ = 0.5,
5% significance level
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5. Application

⊲ Portfolio of 50 large cap stocks. Daily log-returns from
September 26th 2001 to September 16th 2005, i.e. d = 50 and
n = 1000.

⊲ Randomly select collections of 2 assets.

⊲ PIT under Gaussian, Student-t and Clayton (one-parameter) H0

respectively.

⊲ Compute P-value.

⊲ Repeat 100 times ⇒ rejection rates.

⊲ Repeat for collections of 5 and 10 assets.
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5. Application
Gaussian copula

No Weight / Power tail weight (parameter α)
Dimension No weight α = 2 α = 4 α = 10 α = 20

2 0.076 0.132 0.176 0.466 0.512
5 0.700 0.930 0.930 0.920 0.910
10 0.740 1.000 1.000 1.000 1.000

Student-t copula
No Weight / Power tail weight (parameter w )

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.042 0.022 0.032 0.044 0.034
5 0.120 0.090 0.060 0.050 0.070
10 0.260 0.040 0.150 0.130 0.190

Clayton copula
No Weight / Power tail weight (parameter w )

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.622 0.354 0.792 0.434 0.396
5 0.980 0.990 0.980 0.970 0.950
10 1.000 1.000 1.000 1.000 1.000

Table: Rejection rates for the fit of the Gaussian, Student-t and Clayton
copulae.
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6. Summary

⊲ New approach B merges the efficiency of one-dimensional tests
with the consistency of multi-dimensional tests.

⊲ The weighting functionality adds valuable flexibilities to the
analyst.

⊲ Mixing tests show that the approach has good power for tail
heaviness and skewness. The weighting functionality also seem
to be very powerful.

⊲ Applied to daily log-returns of stock portfolios the Student-t
copula outperforms the Gaussian and Clayton copulae, as
expected and in accordance with the findings of other studies.
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